17 research outputs found

    Risk Assessment for Venous Thromboembolism in Chemotherapy-Treated Ambulatory Cancer Patients: A Machine Learning Approach

    Get PDF
    OBJECTIVE: To design a precision medicine approach aimed at exploiting significant patterns in data, in order to produce venous thromboembolism (VTE) risk predictors for cancer outpatients that might be of advantage over the currently recommended model (Khorana score). DESIGN: Multiple kernel learning (MKL) based on support vector machines and random optimization (RO) models were used to produce VTE risk predictors (referred to as machine learning [ML]-RO) yielding the best classification performance over a training (3-fold cross-validation) and testing set. RESULTS: Attributes of the patient data set ( n = 1179) were clustered into 9 groups according to clinical significance. Our analysis produced 6 ML-RO models in the training set, which yielded better likelihood ratios (LRs) than baseline models. Of interest, the most significant LRs were observed in 2 ML-RO approaches not including the Khorana score (ML-RO-2: positive likelihood ratio [+LR] = 1.68, negative likelihood ratio [-LR] = 0.24; ML-RO-3: +LR = 1.64, -LR = 0.37). The enhanced performance of ML-RO approaches over the Khorana score was further confirmed by the analysis of the areas under the Precision-Recall curve (AUCPR), and the approaches were superior in the ML-RO approaches (best performances: ML-RO-2: AUCPR = 0.212; ML-RO-3-K: AUCPR = 0.146) compared with the Khorana score (AUCPR = 0.096). Of interest, the best-fitting model was ML-RO-2, in which blood lipids and body mass index/performance status retained the strongest weights, with a weaker association with tumor site/stage and drugs. CONCLUSIONS: Although the monocentric validation of the presented predictors might represent a limitation, these results demonstrate that a model based on MKL and RO may represent a novel methodological approach to derive VTE risk classifiers. Moreover, this study highlights the advantages of optimizing the relative importance of groups of clinical attributes in the selection of VTE risk predictors

    Smarter City: Smart Energy Grid based on Blockchain Technology

    Get PDF
    The improvement of the Quality of Life (QoL) and the enhancement of the Quality of Services (QoS) represent the main goal of every city evolutionary process. It is possible making cities smarter promoting innovative solutions by use of Information and Communication Technology (ICT) for collecting and analysing large amounts of data generated by several sources, such as sensor networks, wearable devices, and IoT devices spread among the city. The integration of different technologies and different IT systems, needed to build smart city applications and services, remains the most challenge to overcome. In the Smart City context, this paper intends to investigate the Smart Environment pillar, and in particular the aspect related to the implementation of Smart Energy Grid for citizens in the urban context. The innovative characteristic of the proposed solution consists of using the Blockchain technology to join the Grid, exchanging information, and buy/sell energy between the involved nodes (energy providers and private citizens), using the Blockchain granting ledger

    e health iot universe a review

    Get PDF
    The Internet of Things (IoT) devices are able to collect and share data directly with other devices through the cloud environment, providing a huge amount of information to be gathered, stored and analyzed for data-analytics processes. The scenarios in which the IoT devices may be useful are amazing varying, from automotive, to industrial automation or remote monitoring of domestic environment. Furthermore, has been proved that healthcare applications represent an important field of interest for IoT devices, due to the capability of improving the access to care, reducing the cost of healthcare and most importantly increasing the quality of life of the patients. In this paper, we analyze the state-of-art of IoT in medical environment, illustrating an extended range of IoT-driven healthcare applications that, however, still need innovative and high technology-based solutions to be considered ready to market. In particular, problems regarding characteristics of response-time and precision will be examined. Furthermore, wearable and energy saving properties will be investigated in this paper and also the IT architectures able to ensure security and privacy during the all data-transmission process. Finally, considerations about data mining applications, such as risks prediction, classification and clustering will be provided, that are considered fundamental issues to ensure the accuracy of the care processes

    Smarter City: Smart Energy Grid based on Blockchain Technology

    Get PDF
    The improvement of the Quality of Life (QoL) and the enhancement of the Quality of Services (QoS) represent the main goal of every city evolutionary process. It is possible making cities smarter promoting innovative solutions by use of Information and Communication Technology (ICT) for collecting and analysing large amounts of data generated by several sources, such as sensor networks, wearable devices, and IoT devices spread among the city. The integration of different technologies and different IT systems, needed to build smart city applications and services, remains the most challenge to overcome. In the Smart City context, this paper intends to investigate the Smart Environment pillar, and in particular the aspect related to the implementation of Smart Energy Grid for citizens in the urban context. The innovative characteristic of the proposed solution consists of using the Blockchain technology to join the Grid, exchanging information, and buy/sell energy between the involved nodes (energy providers and private citizens), using the Blockchain granting ledger

    Blockchain and IoT Convergence—A Systematic Survey on Technologies, Protocols and Security

    No full text
    The Internet of Things (IoT) as a concept is fascinating and exciting, with an exponential growth just beginning. The IoT global market is expected to grow from 170 billion USD in 2017 to 560 billion USD by 2022. Though many experts have pegged IoT as the next industrial revolution, two of the major challenging aspects of IoT since the early days are having a secure privacy-safe ecosystem encompassing all building blocks of IoT architecture and solve the scalability problem as the number of devices increases. In recent years, Distributed Ledgers have often been referred to as the solution for both privacy and security problems. One form of distributed ledger is the Blockchain system. The aim of this paper consists of reviewing the most recent Blockchain architectures, comparing the most interesting and popular consensus algorithms, and evaluating the convergence between Blockchain and IoT by illustrating some of the main interesting projects in this research field. Furthermore, the paper provides a vision of a disruptive research topic that the authors are investigating: the use of AI algorithms to be applied to IoT devices belonging to a Blockchain architecture. This obviously requires that the devices be provided with adequate computational capacity and that can efficiently optimize their energy consumption

    Reachability Matrix Ontology: A Cybersecurity Ontology

    No full text
    In this paper, we describe the Reachability Matrix Ontology (RMO). RMO aims to describe the networks and the cybersecurity domain in order to compute the reachability information (reachability matrix). Reachability Matrix determines if a node can reach another node (via ISO/OSI layers protocol). To achieve this objective RMO describes the network’s elements, the network connectivity information, and the access control policies. RMO also provides some SWRL rules able to calculate the Reachability Matrix. Besides RMO and SWRL rules, there are also a set of SPARQL queries to refine the computation of the Reachability Matrix. To the best of our knowledge, RMO represents an innovative approach to the computation of the reachability matrix. Following we will describe our approach based on a strategy that exploits a combination of OWL, description logic rules and SPARQL queries
    corecore